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Statistical characteristics of simulated walls
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A B S T R A C T

The large-scale matter distribution in three different simulations of CDM models is

investigated and compared with corresponding results of the Zel'dovich theory of non-linear

gravitational instability. We show that the basic characteristics of wall-like structure

elements are well described by this theory, and that they can be expressed by the

cosmological parameters and a few spectral moments of the perturbation spectrum.

Therefore the characteristics of such elements provide reasonable estimates of these

parameters. We show that the compressed matter is relaxed and gravitationally confined and

manifests itself in the existence of walls as (quasi-)stationary structure elements with a

lifetime restricted by their disruption into high-density clouds.

The matter distribution is investigated in both real and redshift spaces. In both cases

almost the same particles form the walls, and we estimate differences in corresponding wall

characteristics. The same methods are applied to several mock catalogues of `galaxies',

which allows us to characterize a large-scale bias between the spatial distribution of dark

matter and of simulated `galaxies'.

Key words: galaxies: clusters: general ± cosmology: theory ± dark matter ± large-scale

structure of Universe.

1 I N T R O D U C T I O N

Over the past decade immense progress has been achieved in the

investigation of the large-scale matter distribution. Now the galaxy

distribution is studied up to redshift z , 3 (Steidel et al. 1996). At

smaller redshifts the analysis of rich galaxy surveys with an

effective depth ,(200±400) h21 Mpc, such as the Durham/UKST

Galaxy Redshift Survey (Ratcliffe et al. 1996) and the Las

Campanas Redshift Survey (Shectman et al. 1996), has established

the existence of wall-like structure elements as a typical phenom-

enon in the visible galaxy distribution incorporating ,40±50 per

cent of galaxies (Doroshkevich et al. 1996, hereafter LCRS1;

Doroshkevich et al. 1999a, hereafter LCRS2; Doroshkevich et al.

2000, hereafter DURS). The wall-like structure elements with a

typical diameter ,(30±50) h21 Mpc surround low-density regions

with a similar typical diameter ,(50±70) h21 Mpc. Within the

wall-like structures, the observed galaxy distribution is also

inhomogeneous (see, e.g., fig. 5 of Ramella, Geller & Huchra

1992), and galaxies are concentrated in high-density clumps and

filaments.

The galaxies occupying low-density regions are concentrated

within a random network of filaments. Filaments incorporate

,50 per cent of galaxies, and are clearly seen in many redshift

surveys (see, e.g., de Lapparent, Geller & Huchra 1988). These

results extend the range of investigated scales in the galaxy

distribution up to ,100 h21 Mpc. Further progress in the study of

the observed large-scale galaxy distribution could be reached with

the 2dF redshift survey (Cannon 1998; Colless 1998) and the

Sloan Digital Sky Survey (Loveday & Pier 1998).

The formation and evolution of structure on large scales are

investigated in numerous simulations (see, e.g., Cole et al. 1997,

1998, Governato et al. 1998, Jenkins et al. 1998, MuÈller et al. 1998

and Doroshkevich et al. 1999b, hereafter DMRT). These

simulations are performed in large boxes (,350±500 h21 Mpc),

and reproduce the main properties of the observed large-scale

matter distribution. In particular, they confirm formation of large

wall-like matter condensations due to a non-linear anisotropic

matter compression on a typical scale ,(20±30) h21 Mpc, which

is about one-half of the typical wall separation.

The statistical characteristics of wall formation are described by

an approximate theoretical model (Lee & Shandarin 1998;

DemianÂski & Doroshkevich 1999a, 1999b, hereafter DD99)

based on the Zel'dovich non-linear theory of gravitational

instability (Zel'dovich 1970, 1978; Shandarin & Zel'dovich

1989). This approach relates the structure parameters with the

main parameters of the underlying cosmological scenario and the
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initial power spectrum of density perturbations. The impact of

large-scale perturbations is found to be important throughout all

evolutionary stages, and some statistical characteristics of struc-

ture elements±filaments and walls formed in the course of non-

linear evolution±are directly connected with the parameters of

these perturbations. Another theoretical model of large-scale

structure formation was discussed in Bond, Kofman & Pogosyan

(1996).

The simulated large-scale matter distribution does not exactly

reproduce the theoretical expectations due to the influence of

some essential factors, the most important ones being the small-

scale clustering and relaxation of compressed matter, and the

large-scale matter flow within sheet-like structure elements. Thus,

compression of matter along one of the transversal directions

transforms sheet-like elements into filaments, while expansion of

matter in both transversal directions results in the erosion of pan-

cakes. The disruption of walls and the small-scale clustering of

compressed matter substantially accelerate the relaxation and are

responsible for strong matter concentration within walls. This is

apparent from the isotropy of velocity dispersion within walls

noticed in DMRT.

The combined influence of these (and other) factors compli-

cates the statistical description of the large-scale matter distribu-

tion at late evolutionary stages, which is typical for the final

evolutionary stages of the standard COBE-normalized CDM

(SCDM) model with Vm � 1: For low-density models, such as

the open CDM (OCDM) model and the LCDM model with

VL . Vm; the situation is not so complex, and some statistical

characteristics of structure can be successfully compared with the

approximate theoretical expectations.

The investigation of wall-like massive structure elements is

more promising in this respect, because walls represent the first

step in the process of structure formation, and therefore hold more

information about characteristics of the initial matter flow. Such

walls are observed as superclusters of galaxies similar to the Great

Wall (de Lapparent et al. 1988) and the Pisces-Perseus super-

cluster (Giovanelli & Haynes 1993). In simulations such wall-like

structure elements are also easily identified because of their

relatively high overdensity. Samples of such elements were

investigated in DMRT and LCRS2. The connection between the

properties of walls and the amplitude and spectrum of initial

perturbations was discussed in DD99, and some of these results

can be compared with measured properties of simulated wall-like

structure elements. Examples considered in DD99 and DMRT had

a rather illustrative character, but they seem to be quite promising.

Here we will compare more accurately some of the expected

and measured characteristics of wall-like matter condensations.

We concentrate our attention on the physical aspects of the

formation and evolution of the large-scale matter distribution in

order to better understand these processes and the phenomenon of

wall-like matter condensations. Both theoretical and numerical

estimates are inevitably approximate, but nevertheless such

comparison allows us to test the theoretical conclusions, to reveal

and illustrate the influence of essential factors mentioned above,

and to examine the abilities of statistical methods used to describe

the large-scale matter distribution.

These methods allow us to reveal, in particular, some

differences in characteristics of the large-scale matter distribution

in real and redshift spaces. Various aspects of this problem have

been widely discussed during the past decade (see, e.g., Kaiser

1987, McGill 1990a, Davis, Miller & White 1997, Hamilton 1998,

Melott et al. 1998, Hui, Kofman & Shandarin 2000 and Tadros

et al. 1999). Here we show that the differences between

characteristics of walls in real and redshift spaces depend on the

basic cosmological model and increase during the cosmic

evolution. Characteristics of walls in real and redshift spaces are

almost identical for the low-density models, but they differ more

strongly for the SCDM model.

We do not discuss the application of these methods to the

observed galaxy catalogues, which is a much harder problem, due

to the strong influence of selection effects and other factors. We

will consider this problem in the future.

This paper is organized as follows. In Section 2 the basic

notations are introduced. In Section 3 the statistical characteristics

of wall-like structure elements in the Zel'dovich theory are

presented. In Section 4 we consider the methods used to measure

the required characteristics of matter distribution. Our results are

presented in Sections 5 and 6, where they are also compared with

the theoretical expectations. Section 7 contains a summary and a

short discussion of our main results. Some technical details are

given in Appendix A.

2 S TAT I S T I C A L C H A R AC T E R I S T I C S O F

L A R G E - S C A L E S T R U C T U R E

It is generally recognized that the formation of observed large-

scale structure is driven by the middle part of the power spectrum,

p(k), with 0:2 h Mpc21 $ k $ 0:01 h Mpc21 (k is the comoving

wavenumber), and it is weakly sensitive to the small- and large-

scale perturbations. In many publications authors use an artificial

smoothing of the spectrum to describe this process (see, e.g.,

Bardeen et al. 1986, hereafter BBKS, and Coles et al. 1993).

However, as was shown in DD99, it is possible to avoid this

artificial smoothing if the process of structure formation is

described in terms of the displacement, Si(q), and the velocity

rather than the density field.

Indeed, in contrast with the density field, the statistical

characteristics of displacements are weakly sensitive to the

small- and large-scale perturbations, and are reasonably well

described by the middle part of the initial power spectrum. Even

the strong non-linear matter clustering does not significantly

influence the main characteristics of displacements, and so such

(approximate) description of structure holds during a long period

of structure evolution. Of course, this approach cannot describe

the formation of gravitationally confined walls and their

disruption into a system of high-density clouds.

Bearing in mind these comments, we will describe the structure

parameters using characteristics directly connected with the

displacement. One of them is the large-scale amplitude of

perturbations measured by the dispersion of displacements,

s2
s �z� �

1

2p2

�1

0

p�z; k� dk; �2:1�

Another convenient parameter is the coherent length of the

displacement and velocity fields, lv, expressed through the

moment m22 of the initial power spectrum, p(k). A suitably

defined coherent length lv provides simple expressions for the

correlation functions of these fields and the basic characteristics of

the large-scale structure (DD99 and Section 3).

2.1 The Zel'dovich approximation

The Zel'dovich theory connects the Eulerian, ri, and the
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Lagrangian, qi, coordinates of fluid elements (particles) by the

expressions

ri � �1� z�21�qi 2 B�z�Si�q��; �2:2�
Si�q� � ­F�q�=­qi;

where z denotes the redshift, B(z) describes the growth of

perturbations in the linear theory, and the random vector Si or the

random potential F characterize the spatial distribution of

perturbations. The Lagrangian coordinates of a particle, qi, are

its unperturbed comoving coordinates.

The velocity of a particle can be found from (2.2) as

ui�q; z� � dri

dt
� H�z�

1� z
�qi 2 �1� b�B�z�Si�q��;

b�z� � 2
1� z

B

dB�z�
dz

; �2:3�

H�z� � H0

���������������������������������������������������������������������������������������
Vm�1� z�3 � �1 2 Vm 2 VL��1� z�2 �VL

q
;

where H is the Hubble constant �H0 � 100 h km s21 Mpc21�:
Analytical fits for the functions B(z) and b (z) were given in DD99.

Approximately, at z ! 1; we have

B�0� � 1; b�0� <
2:3Vm

1� 1:3Vm

: �2:4�

2.2 Main structure characteristics for the CDM-like power

spectrum

The standard CDM-like power spectrum with a Harrison±

Zel'dovich large-scale asymptote,

pcdm�k� � A�z�kT2�k=k0�; k0 � G h Mpc21; �5�

G �
������������
1:7rg
rrel

s
Vmh;

can be taken as a reasonable approximation of the initial power

spectrum used in the Zel'dovich theory. Here A(z) is the amplitude

of perturbations, T(x) is a transfer function, and rg and r rel are the

densities of CMB photons and relativistic particles (photons,

neutrinos, etc.). For this spectrum the parameters lv and s s are

expressed through the spectral moments, mj, as follows:

l22
v �

�1

0

kT2�k=k0� dk � m22k2
0; �2:6�

s2
s ;

1

2p2

�1

0

pcdm�k� dk � A�z�
2p2

k2
0m22 � A�z�

2p2l2
v

;

mj �
�1

0

x3�jT2�x� dx; m22 �
�1

0

xT2�x� dx:

For the CDM transfer function (BBKS) m22 � 0:023; the

expressions for the scale lv and the characteristic masses of dark

matter (DM) and baryonic components associated with the scale lv
can be written more explicitly as

lv <
6:6

G

������������
0:023

m22

r
h21 Mpc; �2:7�

Mv � 4p

3
krll3

v <
2 � 1014 M(

G2h2
; M�0�b �

Vb

Vm

Mv:

Here Vb is the dimensionless mean density of the baryonic

component. The same characteristic scale lv, as given by (2.7), can

be used for the structure description, as long as the Zel'dovich

theory can be applied.

More details can be found in DD99. The same approach can be

used for other power spectra as well.

2.3 The amplitude of large-scale perturbations

The large-scale amplitude of perturbation as measured by A(z) in

(2.5) and s s (2.1) can be successfully used to describe the

structure evolution in the framework of the Zel'dovich theory. As

was shown in DD99, it is convenient to use±together with s s±an

effective dimensionless `time', t (z, Vm, h),

t�z� � ss���
3
p

lv

; �2:8�

which is proportional to the large-scale amplitude of perturbations

and suitably describes the evolutionary stage reached in the

model. This `time' is similar to that used in the adhesion model

(Shandarin & Zel'dovich 1989).

As was noticed in DD99, the structure evolution shows strong

features of self-similarity, and is described by universal expres-

sions depending on the dimensionless variables q/lv and t . This is

a direct consequence of the Zel'dovich approximation.

The `time' t can be measured by different methods, some of

which are discussed below. It is sensitive to the sample under

investigation and to the method of measurement. It can be used to

quantify bias between spatial distributions of different objects,

such as, for example, large-scale bias between distributions of

galaxies and the DM component.

The quadrupole component of the CMB anisotropy, TQ, the

variance of density in a sphere with radius 8 h21 Mpc, s8, and the

velocity dispersion, svel, are the more often used characteristics of

the large-scale amplitude. All these characteristics are propor-

tional to each other, but their dependence on Vm and h is different,

and they are sensitive to matter distribution on different scales.

Thus the quadrupole component of CMB anisotropy characterizes

the perturbations on scales comparable with the horizon, while the

values svel and s8 are more sensitive to the matter distribution on

moderate and small scales.

The connection of these characteristics with s s and t can be

summarized as follows.

(i) Using the fits for the CMB anisotropy proposed by Bunn &

White (1997), we obtain for the flat LCDM and open OCDM

models

tT < 2:73 h2V1:2
m

m22

0:023

TQ

20mK

� �
; VL � 1 2 Vm; �2:9�

tT < 2:73 h2V1:6520:19 lnVm

m

m22

0:023

TQ

20mK

� �
; VL � 0;

where tT denotes the amplitude of large-scale perturbations, t ,

measured by the CMB anisotropy. These estimates depend on the

spectral moment m22 only, which is very stable and does not

change during the considered period of evolution. However, the

estimates should be corrected if a possible contribution of

gravitational waves is taken into account.

(ii) The amplitude of perturbations, s s and t , can be directly

expressed through the two-point autocorrelation function as follows:

s2
s � lim

r!1

�r

0

dx 1 2
x

r

� �
xj�x�; �2:10�
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and for the autocorrelation function j(r), approximated by the

power law

j�r� � �r0=r�g; r # rj; �2:11�
we have

s2
s �rj� <

r
22g
j r

g
0

�2 2 g��3 2 g� ; tj � ss�rj����
3
p

lv

: �2:12�

Here rj is the first zero-point of the autocorrelation function, and tj
denotes the amplitude t measured by this function. The parameter

rj is usually found with small precision, but for g < 1:5±1:7; 1 2
g=2 < 0:25±0:15 even some variations of rj do not change

significantly the final estimate of t .

(iii) The parameter s8 can be also expressed through the two-

point autocorrelation function, j (r) (Peebles 1993), and for j (r)

approximated by a power law (2.11) we have

s2
8 �

72

�3 2 g��4 2 g��6 2 g�
r0

16 h21 Mpc

� �g

; �2:13�

s2
s < s2

8�8 h21 Mpc�2 �4 2 g��6 2 g�
18�2 2 g�

rj

16 h21 Mpc

� �22g

;

t8 � s8G

������������������������������
�4 2 g��6 2 g�
36:75�2 2 g�

s
rj

16 h21 Mpc

� �2 2 g

2 : �2:14�

(iv) The dispersion of the peculiar velocity of particles at small

redshifts, z , 0; can be written as in the linear theory (DD99)

svel � u0

���
3
p

t; u0 � lvH0b <
Vm

G

1535 km s21

1� 1:3Vm

; �2:15�

and for t we obtain the independent estimate

tvel � svel���
3
p

u0

: �2:16�

Here tvel denotes the amplitude t measured by the velocity

dispersion. svel takes into account also the high velocities

generated by the gravitational compression of matter (in

particular, within clusters of galaxies), and so it actually gives

an upper limit of the amplitude.

3 S TAT I S T I C A L C H A R AC T E R I S T I C S O F

WA L L S I N T H E Z E L' D OV I C H T H E O RY

In both observed and simulated catalogues, at small redshifts, the

wall-like structure elements accumulate ,50 per cent of galaxies

and form the skeleton of large-scale structure. So, investigation of

the characteristics of these elements is important in itself. It allows

us also to obtain information about processes of non-linear

structure evolution. In particular, we can find two independent

measures of the large-scale amplitude, t . As walls represent the

first step of the large-scale non-linear matter compression, their

characteristics can be compared with predictions of the Zel'dovich

theory.

In this section we will consider five characteristics of walls,

namely, the surface density of walls, mw, defined as the amount of

matter per unit of wall surface, for example, per h22 Mpc2, the

thickness of walls, hw, the wall separation, Dsep, the velocity

dispersion of matter compressed within walls, ww, and the

dispersion of wall velocities, sv. All these characteristics can be

derived from the Zel'dovich theory (DD99), and can be found for

simulated point distributions as well.

3.1 Formation of walls

Following DD99, we will consider the intersection of two fluid

particles with Lagrangian coordinates q1 and q2 as the formation

of a wall (Zel'dovich pancake) with the surface density mw �
knpljq1 2 q2j; where knpl is the mean particles density in the

sample. In Zel'dovich theory, statistical characteristics of such

walls are described by the initial power spectrum (2.5), and can be

expressed through the characteristic scale, lv, the surface density

of wall, mw, or dimensionless surface density, qw � mw=lv=knpl;
and the `time', t , introduced in Section 2. To do this, the structure

functions of the initial power spectrum can be used. For the

standard SDM-like power spectrum (2.5) with the BBKS transfer

function these functions were introduced in DD99.

Naturally, the theoretical considerations describe the idealized

model of structure evolution. Thus it uses the rigid wall boundary,

although in reality such boundaries are always blurred. Another

important factor is the compression and expansion of pancakes in

transverse directions. These motions transform pancakes into

filaments and/or lead to the dissipation of poor pancakes. They are

not so important for rich walls, but can change the wall surface

density by a factor of 1.3±1.5. The small-scale clustering and

relaxation of matter also distorts the measured characteristics of

walls with respect to theoretical expectations.

These factors distort the actual power spectrum with respect to

the one used and introduce differences between the expected and

actually measured parameters of walls, which however cannot be

evaluated a priori. The actual power and limitations of this

approach must first be tested with N-body simulations.

3.2 Wall properties in real space

3.2.1 Surface density of walls

The most fundamental characteristic of walls is the surface

density, mw. The approximate expression for the probability

distribution function (PDF) of the pancakes surface density, mw,

defined as above, has been obtained in DD99 in the same manner

as the well-known Press±Schechter mass function. It characterizes

the process of one-dimensional (1D) matter compression and

formation of wall-like pancakes as described by the Zel'dovich

theory.

For Gaussian initial perturbations and the standard CDM-like

power spectrum with the BBKS transfer function, it can be written

as follows:

Nm � 1������
2p
p

tm

1������
qw
p exp 2

qw

8t2
m

� �
erf

��������
qw

8t2
m

r� �
; �3:1�

qw �
mw

lvknpl
� jq1 2 q2j

lv

;

�1

0

Nm�qw� dqw � 1;

kqwl �
�1

0

qwNm�qw� dqw � 8�0:5� 1=p�t2
m < 6:55t2

m;

kq2
wl �

�1

0

q2
wNm�qw� dqw � 128�0:375� 1=p�t4

m < 887t4
m;

where knpl is the mean particle density in the sample, lv is defined

by (2.7), tm characterizes the amplitude of perturbations and the

evolution stage of structures, t , as measured by the surface density

of walls, and q1 and q2 are Lagrangian coordinates of wall

boundaries. This relation was corrected for the merging of
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neighbouring walls, and this process is described by the erf

function in (3.1).

These expressions connect tm with the mean surface density of

walls and allow us to estimate tm from measurements of kqwl. For

other models and/or other distributions of initial perturbations the

PDFs similar to (3.1) could be obtained using the technique

described in DD99.

3.2.2 The wall separation

We have not been able to find a simple theoretical description of

the wall separation. None the less, taking into account the mainly

1D character of wall formation, we can roughly link the mean

measured wall separation, kDsepl, to the mean surface density of

walls, kqwl.
Indeed, the matter conservation law along the direction of wall

compression can be approximately written as follows:

kmwl < f wknplkDsepl; kqwl < f wkDsepl=lv;

where fw is the matter fraction assigned to walls. It implies that on

average a fraction fw of particles situated at the distance ^0.5Dsep

from the centre of the wall will be collected by the wall. For

simulations when the mean wall separation is comparable to the

box size, Lbox, we will use the more accurate relation

kqwl <
f dq

lv

Dsep

1� Dsep=Lbox

� �
: �3:2�

The averaging can be performed analytically assuming the

exponential distribution function for the wall separation.

The factor fdq defined by equation (3.2) characterizes the matter

fraction assigned to walls as it is determined by comparison of

independently measured characteristics kqwl and kDsepl. In turn,

difference between fdq and fw characterizes the robustness and

degree of self-consistency of the model and the measurements.

These estimates are only approximations, because the wall

formation is actually a three-dimensional (3D) process.

3.2.3 Velocity of structure elements

For the pancakes defined in Section 3.1 the one dimensional

velocity of walls, vw, can be found from relations (2.2) and (2.3)

as follows:

vw � 1

jq1 2 q2j
�q2

q1

n�u 2 H�z�r� dq; �3:3�

where n is a unit vector normal to the wall. The small-scale

clustering and relaxation of compressed matter does not influence

the velocities of walls, and so they are the most stable charac-

teristics of the evolutionary stage reached. As was shown in DD99,

the mean velocity of walls, kvwl, is expected to be negligible as

compared with its dispersions, sv, and the expected PDF of this

velocity, Nv, is Gaussian for Gaussian initial perturbations.

For the standard spectrum (2.5) with the BBKS transfer

function, and for qw , 1; the velocity dispersion is related to

the amplitude of initial perturbations as follows:

sv < u0t; tv � sv

u0

; �3:4�

which is similar to (2.16) and also is identical to expectations of

the linear theory. Here tv denotes the amplitude t as measured by

the dispersion of wall velocity, and u0 was introduced by (2.15).

3.2.4 Velocity dispersion of matter compressed within walls

The variance of velocity of matter accumulated by walls,

w2
wz �

1

jq1 2 q2j
�q2

q1

�nu 2 H�z�nr 2 vw�2 dq; �3:5�

can be found in the framework of the Zel'dovich theory using

the structure functions described in DD99. As is shown in

Appendix A, it can be written as

w2
wz�qw; t� < u2

0

q2
w

12
� t2�1� b�2

3b2
qw

� �
; qw ! 1; �3:6�

where b , u0, qw and vw were introduced by (2.3), (2.4), (2.15),

(3.1) and (3.3). In fact, this function characterizes the mean kinetic

energy of particles compressed into a wall of a given size qw. After

averaging over a sample of walls with the PDF Nm (3.1), in the

Zel'dovich theory, we obtain

w2
z �t� � kw2

wz�qw; t�l < u2
0t

4 7:4� 2:2�1� b�2
b2

� �
: �3:7�

The comparison of the expected mean kinetic energy of the

compressed particles with the kinetic energy measured in

simulations characterizes the mean degree of relaxation of

compressed matter at a given t .

For richer walls with qw @ kqwl; the relation (3.6) is

transformed into

wwz <
u0�����
12
p qw; �3:8�

and for such walls, the PDF is similar to (3.1). For a rich sample of

walls, this relation can be also used for the direct measurement of

the amplitude t (DMRT; DD99).

3.2.5 Wall thickness

The methods discussed in DD99 allow us also, in the framework

of the Zel'dovich theory, to obtain the expected thickness of walls

along the direction of maximal compression, hw. It can be

characterized by the thickness of a homogeneous slice with the

same surface density. The corresponding expression (Appendix A)

is

hwz�qw; t� < 2lvt
������
qw

p �1� z�21: �3:9�
This relation shows that the wall thickness is strongly correlated

with its surface density. After averaging with the PDF (3.1), we

obtain for the mean thickness of walls

khwzl < 8p21=2lvt
2�1� z�21: �3:10�

The degree of matter compression in the Zel'dovich theory,

dz(q,t ), is characterized by the ratio

dz � qwlv

hw

�
������
qw
p
2t

:

After averaging with the PDF (3.1) we have for the mean degree

of matter compression

kdzl <
k ������

qw
p l
2t

� 2����
p
p � 1:13: �3:11�

So, in the Zel'dovich theory the averaged degree of matter

compression is small.
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3.3 Wall properties in redshift space

In observed catalogues only the redshift position of galaxies along

the line of sight is known, and therefore the parameters of observed

structures with respect to those found above can differ due to the

influence of the velocity field. The statistical characteristics of walls

in redshift space predicted by the Zel'dovich theory can be found

with the methods described above. This information is not so rich as

in real space because in redshift space, positions of particles are

determined by their velocities, and, for example, such a useful

characteristic as the wall velocity cannot be found.

3.3.1 Surface density of walls

In real space (Section 3.1) the pancake formation was defined as

an intersection of particles with coordinates q1 and q2. In redshift

space the velocity (2.3) along the line of sight must be used

instead of the coordinate. In Zel'dovich theory the velocity

dispersion exceeds the dispersion of displacement by a factor of

�1� b�: Hence this substitution increases the wall surface density

in redshift space with respect to that in real space, and now we

must use

trd � f rdt � t

�����������������������������������������������
�1� b�2 cosf2 � sinf2

q
; �3:12�

instead of t . Here the factor f rd $ 1 describes the more effective

matter compression in redshift space predicted by the Zel'dovich

theory, b was introduced in (2.3), (2.4), and f is a random angle

between the direction of wall compression and the line of sight

�0 # f # p=2�: Evidently, trd � t for b � 0; so f rd�b � 0� � 1:
The PDF of wall surface densities in redshift space is identical

to (3.1) with a substitution of t rd for t, and now for the mean

surface density of walls we have

kqwl � 8�0:5� 1=p�kf 2
rdlt2 < 6:55kf 2

rdlt2; �3:13�
1 # kf 2

rdl � 1
3
�2� �b� 1�2� # 2;

where t characterizes the evolutionary stage as before. These

relations can probably be used for the description of poorer

pancakes and earlier evolutionary stages when the influence of

other factors is less important.

At small redshifts we must take into account the influence of

the high velocity dispersion of compressed matter generated by

the small-scale matter clustering and relaxation. The influence of

this factor, well known as the `finger of God' effect, is opposite to

that discussed above. It changes the observed particle position

within walls along the line of sight, which blurs the wall boundary

and increases the thickness of observed walls. It artificially

removes the high-velocity particles from the selected wall, and

effectively decreases the surface density of walls selected in

redshift space with respect to the estimates (3.13).

The impact of this factor can be approximately described by a

modification of PDF of wall surface density,

Nrd
m �

1������
2p
p

f rdt

1������
qw
p erf

�������������
qw

8f 2
rdt

2

r !

� exp 2
qw

8f 2
rdt

2

 !
2 exp 2

qw

8t2

� �
�W�qw; t; dthr�

" #
;

�3:14�
and a new normalization of distribution Nrd

m :

The second term in the square brackets describes the artificial

rejection of high-velocity particles from the wall with a surface

density qw bounded by a threshold density d thr. In this term the

exponent gives the fraction of matter accumulated by the wall in

real space for some qw and t , whereas W(qw, t , d thr) is the fraction

of high-velocity particles which are removed from the wall in

redshift space. The function W(qw, t , d thr) cannot be found in the

Zel'dovich theory, as it depends on the distributions of particles

positions and velocities arising due to the small-scale clustering

and relaxation of matter compressed within walls.

Another factor which can suppress the expected difference of

wall characteristics, measured in real and redshift spaces at small

redshifts, is the strong matter condensation within structure

elements with various richnesses. The strong matter rearrange-

ment transforms the continuous matter infall on walls into a

discontinuous one, increases the separation of infalling structure

elements, even in redshift space, and so, at least partly, prevents

the erosion of wall boundaries.

These comments show that in redshift space the Zel'dovich

theory with the factor frd given by (3.12) and (3.13) overestimates

the matter concentration within walls. Therefore, instead of the

factor frd in (3.13) a factor k rd(G,t ,lthr) should be used, and the

more realistic relation

tm <
���������������

qw

6:55k2
rd

r
; 1 # krd # f rd; �3:15�

connects the amplitude tm with the wall richness qw in redshift

space.

The actual value of k rd depends on the parameters of the

cosmological model and on the method of identification of walls.

The analysis performed below shows that for the walls selected in

3D space as described in Section 6.1, no growth of qw was found,

and the parameters qw and tm are connected by the relation (3.1)

as in real space.

3.3.2 Wall separation

The separations of richer walls is not sensitive to relatively small

shifts of particle positions introduced by the random velocities, but

these shifts can result in an artificial merging of poorer walls. The

influence of this factor can be tested with the relation (3.2) as before.

3.3.3 Velocity dispersion of matter compressed within walls and

the wall thickness

In redshift space the expression for the velocity dispersion of

matter compressed within walls in the Zel'dovich theory is

identical to (3.6) with a substitution of trd � tkrd instead of t , but

now it characterizes also the observed thickness of walls. For

walls selected from the 3D sample of particles, as described in

Section 6.1, we have

hw �
�����
12
p

wwH21
0 ; �3:16�

ww � u0

�������������������������������������������������
q2

wb
2

12
� t2k2

rdqw

3
�1� b�2

s
: �3:17�

This value exceeds the corresponding real thickness of walls given

by (3.9). The expected overdensity of compressed matter is given by

drd � lvkqw=hwl: �3:18�
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4 M E A S U R E D C H A R AC T E R I S T I C S O F

L A R G E - S C A L E M AT T E R D I S T R I B U T I O N

4.1 Core-sampling approach

The core-sampling approach was proposed by Buryak, Dorosh-

kevich & Fong (1994) for the analysis of the galaxy distribution in

deep pencil-beam redshift surveys. In the original form it allows

us to obtain the mean free-path between the filaments and walls. It

was improved and described in detail in LCRS1, where some

characteristics of the large-scale galaxy distribution were found

for the Las Campanas Redshift Survey. For simulated matter

distributions as considered here these characteristics were

discussed in DMRT.

The potential of the core-sampling approach is not exhausted by

these applications, and it could be used to measure parameters of

the large-scale matter distribution discussed in the previous

sections. Here we will use this approach to obtain the

characteristics of the wall-like structure component.

The core-sampling method deals with a sample of points

(galaxies) lying within relatively narrow cores±rectangular and/or

cylindrical in simulations, and conical in observations±and it

studies the point distribution along these cores. For some

applications the transversal coordinates of points can be used as

well. To take into account the selection effects, which are

important for observed catalogues, appropriate corrections can be

incorporated. The sampling core is characterized by the size,

Dcore, that is the side of a rectangular core or the angular diameter

of a conical core.

4.2 Measured characteristics of walls

Here we will apply the core-sampling technique to the sample of

wall-like structure elements selected by a 3D cluster analysis

(DMRT; see Section 6.1). This means that the sampling cores

contain only the particles assigned to walls. Further on, all

particles are projected on to the core axes and are collected into a

set of clusters with a linking length llink. Clusters with richness

larger than a threshold richness, Nmin, are identified with walls

within the sampling core.

The measured wall parameters are sensitive to the influence of

small-scale clustering of matter within walls. For strongly

disrupted walls and a narrow core, the results depend on the

random position of high-density clumps, which strongly increases

the scatter of measured wall properties. The influence of this

factor is partly suppressed for larger sizes of the sampling core,

Dcore.

However, the random intersection of the core with a wall

boundary generates artificially poor clusters. The number of such

intersections increases proportionally to Dcore, which restricts the

maximal Dcore. To suppress the influence of this factor, a threshold

richness of cluster, Nmin, was used. If, however, Nmin becomes too

large, the statistical estimates become unreliable. For large Dcore

the overlapping of projections of neighbouring walls also becomes

important which distorts the measured wall characteristics.

It is also important to choose an optimal linking length, llink,

because for small llink, only the high-density part of walls is

measured, whereas for larger llink, again the impact of the random

overlapping of wall projections becomes important.

The influence of these factors cannot be eliminated completely,

and our final estimates of properties of walls are always distorted

to some degree. These distortions can be minimized for an optimal

range of parameters Dcore, Nmin and llink. Practically, these factors

do not distort the velocity dispersion of walls, sv, which therefore

provides the best characteristic of the actual evolutionary stage of

the wall formation. On the other hand, the comparison of results

obtained for different llink and Dcore allows us to characterize the

inner structure of walls.

4.2.1 Measurement and correction of wall parameters

The richness of clusters in the core measures the surface density of

walls,

msim � Nm

D2
core

; �4:1�

where Nm is the number of particles in a cluster. The velocity of

walls, vsim, the velocity dispersion of particles accumulated within

walls, wsim, and the proper sizes of walls, hsim, are found as follows:

rw � 1

Nm

XNm

i�1

ri; vsim � 1

Nm

XNm

i�1

�ui 2 Hri�;

w2
sim �

1

Nm 2 1

XNm

i�1

�ui 2 Hri 2 vsim�2; �4:2�

h2
sim �

12

Nm 2 1

XNm

i�1

�ri 2 rw�2:

Here ri, rw and ui are the coordinates of a particle, of a wall, and

the velocity of a particle along the sampling core, respectively.

The wall separation, Dsim, is measured by the distance between

neighbouring clusters.

The parameters msim, vsim, wsim and hsim as given by (4.1) and

(4.2) are found along the sampling core, and so are not identical to

the parameters discussed in Section 3. These parameters must be

corrected for the random orientation of walls with respect to the

sampling core. The impact of this factor increases the measured

surface density, and the corrected wall surface density, mc, is

connected with the measured one by

mc � msim cosf; 0 # f # p=2;

kmcl � 0:5kmsiml; �4:3�
where f is a random polar angle between the core and the vector

orthogonal to the surface of the wall, and the averaging is

performed in a spherical coordinate system. Corrected values of

the wall velocity and the walls thickness are as follows:

vc � vsim

���
3
p
; hc � hsim=

���
3
p
: �4:4�

In redshift space the wall thickness is connected with the velocity

dispersion by (3.16). The velocity dispersion within walls was

found to be almost isotropic (DMRT), and so we will use the

measured wsim as the actual velocity dispersion across walls.

The measured PDF of the wall surface density, Nm(mc), and the

mean wall surface density, kmcl, are distorted due to the small-

number statistics of rich walls and rejection of poor walls with a

richness Nm # Nmin: The correction for these distortions can be

estimated by comparing the simulated PDF with the expected PDF

(3.1).

To do this, we will fit the measured PDF to the function

Nm � am������
xm
p e2xm erf� ������xm

p �; xm � bmmsim

kmsiml
: �4:5�
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The parameter bm describes deviations of measured and expected

mean surface density of walls kmsiml, and am is a normalization

factor. If the measured PDF is well fitted to the function (4.5), then

the value

mt � kmcl=bm �4:6�
can be taken as a measure of the `true' mean surface density of

walls.

Finally, the mean dimensionless surface density of walls, kqwl,
and the amplitudes of perturbations, tm and tv, measured by the

surface density and velocity of wall-like structure elements, can be

estimated as follows:

kqwl � kmsiml
2bmlvknpl

; tm �
���������
kqwl
6:55

r
; tv �

�����������
kv2

siml
p

u0

: �4:7�

The small-number statistics of rich and poor walls distorts also the

measured wall separation, Dsep. The expected distribution of wall

separations is exponential, and therefore it is possible to correct

the mean separation using the fit of the measured PDF, Nsep(Dsim),

to the function

Nsep � asep exp�2bsepDsim=kDsiml�: �4:8�
As before, the parameter bsep describes deviations of the measured

and expected mean separation of walls, and asep is a normalization

factor. If the measured PDF is well fitted to the function (4.8), then

the value

kDsepl � kDsiml=bsep; �4:9�
can be taken as a measure of the `true' mean separation of walls.

5 G E N E R A L C H A R AC T E R I S T I C S O F T H E

S I M U L AT E D M AT T E R D I S T R I B U T I O N

5.1 Basic simulations

The theoretical model discussed above describes the evolution of

the DM distribution and so should be tested with the simulated

DM distribution as well. Here we use three simulations as a basis

for our analysis±the COBE-normalized standard CDM model

(SCDM), a LCDM with VL . Vm; and an open CDM (OCDM)

model. These models were described and investigated with 3D

cluster analysis and Minimal Spanning Tree technique in DMRT.

It was found that the LCDM and OCDM models successfully

reproduce the main observed characteristics of large-scale matter

distribution, while the SCDM model demonstrates strong

signatures of over-evolution. Here we study these three models,

bearing in mind that only the LCDM and OCDM models can be

considered as realistic models of the observed large-scale matter

distribution. The SCDM model represents the matter distribution

typical for a late evolutionary stage.

The simulations were performed with a PM code in a box of

(500 h21 Mpc)3 with (300)3 particles for the Harrison±Zel'dovich

primordial power spectrum and the BBKS transfer function. The

force and mass resolutions are ,0.9 h21 Mpc and ,1011 M(,

respectively. The point distribution in redshift space was produced

by adding an apparent shift to one coordinate due to the peculiar

velocity of particles.

Four mock catalogues were prepared on the basis of the OCDM

model with various degrees of large-scale bias between the spatial

DM distribution and the `galaxies'. These mock catalogues were

constructed by identifying randomly `galaxies' with DM particles,

but with a probability depending on the environmental density,

thereby identifying more particles as `galaxies' in high-density

regions (walls). These catalogues were investigated also in both

real and redshift spaces.

The main characteristics of the simulations are listed in Table 1.

A more detailed description can be found in DMRT.

5.2 Large-scale amplitude of perturbations

The evolutionary stages reached in the models under discussion

can be suitably characterized using the methods described in

Section 2. The value tT listed in Table 1 characterizes the large-

scale amplitude used for the normalization of simulated perturba-

tions. Other measures of the amplitude, such as s8, tj and tvel,

are sensitive both to the actually realized sample of random

perturbations (cosmic variance) and to the non-linear distortions

of power spectrum produced during the evolution. For the

considered mock catalogues these measures are also sensitive to

the large-scale bias between the spatial DM and `galaxies'

distributions, which allows us to characterize it quantitatively.

The spatial matter distribution and the bias between spatial

distributions of DM component and `galaxies' can be character-

ized by the correlation length, r0, and the slope of the correlation

function, g , introduced in (2.11). These parameters are listed in

Table 1 for all samples. Using relations (2.12) and (2.13), these

values allows us to calculate s8 and tj , which are also listed in

Table 1.

The characteristics of correlation function, r0 and g , are

sensitive to the perturbations in scales k , 0:5±0:1 h Mpc21: As is

seen from (2.12), estimates tj are very sensitive to the value of

2 2 g; and so to small-scale perturbations. The first zero-point of

Table 1. Parameters of simulated DM and mock catalogues.

sample Vm h tT s8 r0 g tj svel=
���
3
p

tvel

h21 Mpc km s21

SCDM 1 0.5 0.68 1.37 6.5 1.9 0.94 670 0.51
LCDM 0.35 0.7 0.37 1.11 6.0 1.8 0.34 554 0.37
OCDM 0.5 0.6 0.29 0.74 5.0 1.3 0.25 346 0.23
mock1 0.5 0.6 0.29 0.95 6.0 1.4 0.28 370 0.25
mock2 0.5 0.6 0.29 0.95 6.0 1.4 0.28 370 0.24
mock3 0.5 0.6 0.29 1.24 7.0 1.5 0.33 374 0.24
mock4 0.5 0.6 0.29 1.61 8.0 1.6 0.39 404 0.26

r0 and g are the correlation lengths and the slope of correlation function (2.11) in
redshift space; s8, tT and tj are the amplitudes of perturbations as given by (2.9) and
(2.12), svel and tvel are the velocity dispersion of all particles and amplitudes of
perturbations measured by svel as given by (2.16).
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the autocorrelation function, rj < 40 h21 Mpc; can be usually

found with a large uncertainty (,20±30 per cent) but its impact is

reduced by the small exponent 1 2 g=2 # 0:3 in (2.12).

For OCDM and LCDM models the impact of small-scale

matter clustering is moderate, and differences between tj and tvel

are found to be ,10 per cent. The differences between the same

parameters and tT can be considered as a reasonable measure of

simulated `cosmic variance'. For these models differences

between the parameter tj calculated for real and redshift spaces

also do not exceed ,10 per cent. For the SCDM model both tj
and tvel are distorted by the strong small-scale clustering. This

divergence indicates that for the SCDM model the successful

application of methods discussed in Section 3 is also in question.

The progressive growth of tj and s8 for mock catalogues

characterizes the degree of the large-scale bias between the spatial

distribution of DM component and `galaxies'.

6 P R O P E RT I E S O F WA L L - L I K E S T R U C T U R E

E L E M E N T S

The main basic characteristics of walls were discussed in DMRT

for three DM and four mock catalogues mentioned above both in

real and redshift spaces. In this section the wall characteristics

discussed in Section 3 are found with the core-sampling technique

for the same simulations and the same samples of walls.

6.1 Selection of wall-like structure elements

The sample of wall-like structure elements was selected by the two-

parameter method described and exploited in DMRT. It identifies the

wall-like structure elements with clusters found using a threshold

linking length, lthr, and a threshold richness, Nthr. As usual, the

boundary of the clusters is defined by the threshold overdensity, d thr,

which is connected with the threshold linking length by

dthr � nthr

knl
� 3

4pknll3thr

: �6:1�

The threshold richness, Nthr, restricts the matter fraction, fw,

associated with walls.

The main characteristics of these samples both in real and

redshift spaces are listed in Table 2. The values of f w < 0:4±0:45

are consistent with the theoretically expected and observed matter

fraction accumulated by walls (DD99; LCRS1; LCRS2). The

analysis performed in DMRT shows that for the low-density

models the main characteristics of such wall-like elements are

similar to the observed characteristics of superclusters of galaxies

(Oort 1983, 1984; LCRS2; DURS).

6.2 DM walls in real space

The analysis of DM catalogues in real space is most interesting, as

in this case we can study the clear signal from the gravitational

interaction of compressed matter, and can reveal and characterize

statistically the matter relaxation. Five basic characteristics of DM

walls discussed in Section 3, namely, the wall thickness, hw, the

dispersions of wall velocities, sv, the velocity dispersion of matter

compressed within walls, ww, the dimensionless surface density,

qw, and mean separation of walls, Dsep, can be found with the

core-sampling method, and can be compared with those found in

DMRT. The surface density of walls is closely connected with the

size of protowalls, as discussed in DMRT.

Comparison of such characteristics of matter distribution as tvel

listed in Table 1 and tv and tm related to the wall properties

allows us to test the influence of small-scale matter clustering and

other random factors discussed in Section 4.3, and to find the

optimal ranges of core size, Dcore, and of threshold richness, Nmin,

as well as the optimal linking length, llink. The results listed in

Table 2 are obtained with the linking length llink � 5 h21 Mpc; and

are averaged over seven core sizes, 6 h21 Mpc # Dcore #
9 h21 Mpc; and over seven threshold richnesses, 10 # Nmin # 35:

6.2.1 Basic characteristics of DM walls

For all models, the dispersion of wall velocities, sv, is found to be

Table 2. Wall characteristics in real and redshift spaces.

sample d thr fw fcr kqwl ktml ktvl kdl khwl kwwl ke l pw kDsepl fdq

h21Mpc km s21 h21Mpc
real space

SCDM 2.5 0.44 0.74 1.00^ 0.18 0.39^ 0.04 0.58 4.7 3.4^ 0.4 463^ 18 0.1 0.27 43^ 8 0.4
LCDM 1.6 0.46 0.85 0.83^ 0.16 0.35^ 0.03 0.39 7.4 4.0^ 0.3 387^ 20 0.2 0.30 71^ 13 0.4
OCDM 1.3 0.40 0.88 0.52^ 0.06 0.28^ 0.02 0.26 2.4 6.0^ 0.7 330^ 33 0.8 0.44 46^ 8 0.3
mock1 1.6 0.43 0.82 0.87^ 0.15 0.36^ 0.03 0.27 5.0 7.0^ 1.1 412^ 51 0.9 0.48 84^ 17 0.3
mock2 1.3 0.44 0.81 0.84^ 0.13 0.36^ 0.03 0.27 5.1 6.6^ 0.9 394^ 45 0.8 0.47 78^ 13 0.3
mock3 1.3 0.45 0.84 0.88^ 0.11 0.36^ 0.02 0.27 5.6 5.2^ 0.6 354^ 27 0.6 0.43 73^ 11 0.4
mock4 1.3 0.44 0.86 1.23^ 0.17 0.43^ 0.03 0.28 9.1 4.5^ 0.4 359^ 20 0.5 0.39 78^ 14 0.5
mock4 1.3 0.48 0.87 1.35^ 0.19 0.45^ 0.03 0.27 7.5 5.6^ 0.5 379^ 26 0.7 0.40 81^ 12 0.5

redshift space
SCDM 2.5 0.41 0.88 0.84^ 0.08 0.36^ 0.02 ± 1.8 8.5^ 0.8 245^ 23 ± 0.75 45^ 9 0.3
LCDM 2.1 0.45 0.88 0.76^ 0.13 0.34^ 0.03 ± 2.6 7.2^ 0.6 207^ 17 ± 0.48 63^ 11 0.4
OCDM 1.3 0.44 0.77 0.56^ 0.10 0.29^ 0.03 ± 1.4 11.2^ 1.3 323^ 36 ± 0.58 49^ 8 0.3
mock1 1.2 0.43 0.82 0.89^ 0.16 0.37^ 0.03 ± 2.7 13.3^ 2.3 385^ 66 ± 0.71 87^ 18 0.3
mock2 1.5 0.43 0.83 0.86^ 0.13 0.36^ 0.03 ± 2.7 12.2^ 1.9 353^ 54 ± 0.70 86^ 25 0.3
mock3 1.8 0.44 0.86 0.85^ 0.09 0.36^ 0.02 ± 2.9 9.5^ 1.1 276^ 32 ± 0.70 83^ 17 0.3
mock4 1.8 0.45 0.84 1.10^ 0.13 0.41^ 0.02 ± 4.1 8.8^ 0.9 254^ 25 ± 0.65 87^ 21 0.4
mock4 1.3 0.46 0.82 1.22^ 0.13 0.43^ 0.02 ± 3.8 10.1^ 0.9 291^ 26 ± 0.61 89^ 16 0.4

Here d thr is threshold parameters of clusters, fw is the fractions of all particles forming the selected walls, and fcr is the fraction of particles
belonging to walls in both real and redshift spaces. Parameters tm,tv are the amplitude of perturbations as given by (3.1) and (3.4). The
other quantities are explained in the text. Averaging was performed over seven core sizes, 6 h21 Mpc # Dcore # 9 h21 Mpc; and over seven
threshold richnesses, 10 # Nmin # 35 for the linking length llink � 5 h21 Mpc:

Characteristics of simulated walls 673

q 2000 RAS, MNRAS 318, 665±680



the best and most stable characteristic of the evolutionary stage

reached. This is the direct consequence of the discrimination

between the wall velocity and the velocity dispersion of particles

compressed within walls. The PDFs, Nv, plotted in Fig. 1, are well

fitted to Gaussian functions with the measured dispersion.

For the OCDM and LCDM models the mean dimensionless

surface density of walls, kqwl, and the amplitudes, tm < tv < tvel;
are found with scatters ,10±15 per cent for the adopted Nmin,

Dcore and llink. This scatter characterizes the moderate action of

random factors discussed in Section 3.2, and the procedure of

measurement. The values of lvkqwl are consistent with estimates

of the size of protowalls obtained in DMRT. The PDFs of the

surface density plotted in Fig. 2 are consistent with that expected

from (3.1). These results demonstrate that for lower density

cosmological models the Zel'dovich approximation successfully

describes these basic characteristics of rich walls.

For the SCDM model, the results listed in Table 2 are more

sensitive to the method of measurement, and the surface density of

walls is underestimated, tm , tv < tvel: This difference can be

mainly ascribed to the strong disruption of walls occurring at late

evolutionary stages in this model. Other important factors are the

faster compression and/or expansion of walls in transversal

directions, and the existence of richer haloes of evaporated

particles around the walls mixed with infalling particles. Such a

halo becomes richer for larger t, i.e., for the LCDM, and

especially for the SCDM models.

The distribution function of wall separation, Nsep, plotted in

Fig. 3 is well fitted to (truncated) exponential distribution. The

mean wall separation kDsepl is sensitive to the threshold richness

Nmin and to the core size Dcore. The separation kDsepl ,
40 h21 Mpc; found for the lower threshold richness, Nmin � 5;
and larger core sizes, Dcore � 9 h21 Mpc; coincides with the

results obtained in DMRT. It increases with Nmin as the number of

rich walls progressively decreases. For smaller Dcore and larger

Nmin some of highly disrupted walls are lost due to their small

covering factor. This parameter can be found with relatively large

scatter.

Using relation (3.2), we can compare our estimates of kDsepl
and kqwl. For all models we have

f dq < �0:75±0:9�f w; �6:2�

and the mean wall separation is probably overestimated.

For all models under consideration, the mean wall thickness,

khwl, is similar to that found in DMRT with the inertia tensor

technique, where a wall is represented by a homogeneous

ellipsoid. It is about 2±4 times smaller than that expected in the

Zel'dovich approximation (3.10) which is an indication of the

relaxation of gravitationally bounded DM particles within walls.

For the OCDM model the velocity dispersion of matter

compressed within walls is found to be similar to the mean

velocity of walls and of all particles, kwwl , sv < svel: In

contrast, for the SCDM and LCDM models the dispersion kwwl is

about 30 per cent smaller than that obtained for the complete walls

in DMRT and the dispersions svel and sv discussed above. This

divergence characterizes statistically the evaporation of high-

energy particles in the course of the relaxation of compressed

matter, and is reinforced by the procedures of measurement and

wall selection. The relatively small value of kwwl demonstrates

that, in contrast to the clusters of galaxies, the moderate degree of

1D matter compression within walls is not accompanied by a

significant increase of velocity dispersion.

Figure 1. PDFs of DM wall velocity, Nv(vw/kvwl), in real space for SCDM,

LCDM and OCDM models. The Gaussian fits are shown by solid lines.

Figure 2. PDFs of the DM wall surface density, Nm(qw/kqwl), in real (solid

lines) and redshift (dashed lines) spaces for SCDM, LCDM and OCDM

models. The fits (3.1) are shown by solid lines.
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6.2.2 Relaxation of compressed matter

For LCDM and SCDM models the wall thickness, hw ,
�3±4� h21 Mpc; is 2±3 times smaller than that expected in the

Zel'dovich theory (3.10). So, large compression of matter within

walls means that the selected particles are strongly confined and,

probably, relaxed. For 1D matter compression the relaxation is

expected to be weak, but in reality it is reinforced due to the small-

scale clustering and disruption of walls.

The degree of relaxation reached can be characterized by the

parameters kd l and ke l,

kdl � lvqw

hw

� �
; kel � kw2

wl
w2

z �t�
; �6:3�

listed in Table 2. Here kd l measures the mean degree of matter

compression, and ke l is the mean kinetic energy of compressed

particles with respect to the expectations of the Zel'dovich theory.

The function wz(t ) given by (3.7) is evaluated at t � tv:
The divergence between the expectations of the Zel'dovich

theory and simulations is moderate for the OCDM model, and

becomes strong for the LCDM model as the evolution progresses.

For the SCDM model the estimate of kd l is artificially decreased,

together with kqwl. The small value of kel , 0:1±0:2 confirms an

essential deficit of energy of compressed particles in comparison

to that expected in the Zel'dovich theory. This deficit is partly

enhanced by the procedure of wall selection, as the wall

boundaries are blurred, and particles placed far from the wall

centre are not included into walls.

In the Zel'dovich theory the strong correlation of ww and hw

with the wall richness, mw, is described by expressions (3.6) and

(3.9). In simulations the measured linear correlation coefficients

of qw, ww and hw are also ,0.4±0.5, which indicates that the

essential mass dependence of these parameters remains also after

relaxation. To discriminate the regular and random variations of

functions ww and hw, we will consider the reduced wall thickness,

z , and the reduced velocity dispersion, v , which can be defined as

follows:

hw � khwlmphz; ww � kwwlmpwv; �6:4�
m � mw=kmwl � qw=kqwl; ph < pw < 0:3±0:4;

kzl < kvl < 1; sz < sv < 0:2:

In all considered cases the PDFs of the reduced velocity

dispersion within walls, Nv , and of the reduced wall thickness, Nz ,

can be roughly fitted to Gaussian functions. The PDFs Nv are

plotted in Fig. 4 for all three models.

These results show that due to the strong relaxation of

compressed matter the correlations between the considered

characteristics of walls predicted by the Zel'dovich theory in

equations (3.6), (3.8) and (3.10) are replaced by relations (6.4),

which are also universal.

6.3 DM walls in redshift space

If the analysis of wall characteristics in real space allows us to

reveal the influence of gravitational interaction of the compressed

matter, then a similar analysis performed in redshift space reveals

the influence of random velocities on the observed characteristics

of the large-scale matter distribution.

In redshift space the analysis of wall characteristics was

performed for samples of walls selected as described in Section

Figure 3. PDFs of DM wall separations, Nsep(Dsep/kDsepl), in real (solid

lines) and redshift (dashed lines) spaces for SCDM, LCDM and OCDM

models. The exponential fits are shown by solid lines.

Figure 4. PDFs of the reduced velocity dispersion, Nv(v /kvl), for DM

walls in real (solid lines) and redshift (dashed lines) spaces for SCDM,

LCDM and OCDM models. The Gaussian fits are also shown by solid and

dashed lines.
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6.1. As was shown in DMRT, in low-density cosmological models

the main characteristics of these walls are similar to the observed

characteristics of superclusters of galaxies. The determination of

wall characteristics and their corrections are discussed in Section

4.3. The wall parameters were found in the same ranges of Dcore

and Nmin as in real space for llink � 5 h21 Mpc:
The main results are listed in Table 2, and are plotted in Figs

2±4.

6.3.1 Walls in real and redshift spaces

The samples of walls selected in real and redshift spaces are not

identical with each other due to influence of random velocities of

particles. This difference can be suitably characterized by the

fraction of the same particles assigned to walls in both spaces.

Here this fraction was defined as a ratio of number of the particles,

Ncom, to the number of particles assigned to the selected walls, Nw.

For all models under consideration this fraction, listed in Table 2,

is

f cr � Ncom=Nw , 0:8±0:9:

Small variations of the number of particles, Nw, assigned to walls

in real and redshift spaces lead to these variations.

These results indicate that the influence of high random

velocities generated by the small scale wall disruption and the

matter relaxation moderately distorts the sample of walls selected

in redshift space. More strong deviations between such wall

parameters as the wall thickness and degree of matter compres-

sion, measured in real and redshift spaces, are caused by the

redistribution of matter within walls and the procedure of

measurement, rather than by the incorrect wall identification.

The impact of these factors rapidly increases with tm, and

becomes extreme for the SCDM model.

These deviations can be sensitive to the code used for simu-

lation (see, e.g., discussion in Splinter et al. 1998). For example, in

the P3M code, these variations may increase due to the larger

velocities of compressed matter generated there.

6.3.2 Basic characteristics of DM walls

For all three models the mean surface density of selected walls

listed in Table 2 is similar to that found in real space. This fact

shows that the artificial growth of matter concentration within

walls discussed in Section 3.2 is effectively suppressed by the

influence of the velocity dispersion and the procedure of wall

selection, and the relation (3.1), as before, connects the mean

surface density of selected walls, kqwl, with the amplitude, tm.

Variations of kqwl and tm with Dcore and Nmin are shown in Table 2

as a scatter of these parameters. The PDFs Nm plotted in Fig. 2 are

also similar to those found in real space.

The mean wall separation is consistent with the estimate found

in real space and, as before, for all models f dq < �0:75±0:9�f w:
The PDFs Nsep plotted in Fig. 3 are also similar to those found in

real space.

In redshift space the adopted method of wall identification

selects mainly particles with a small relative velocity, which

essentially restricts the measured velocity dispersion within walls

and the wall thickness. Results listed in Table 2 show that only for

the OCDM model, the velocity dispersion of compressed matter is

consistent with the values found in real space and in DMRT. For

LCDM and SCDM models they are even smaller than those found

in real space. The measured wall thickness is now linked with the

velocity dispersion by the relation (3.16).

6.3.3 Characteristics of matter relaxation

In redshift space walls are less conspicuous than in real space but,

even so, for all three models the mean overdensity, kdl, listed in

Table 2, differs from the estimates based on the Zel'dovich theory

(3.7). As in real space, the velocity dispersion in redshift space is

strongly correlated with the surface density of walls, which is

described by the relation (6.4) with an exponent pw < 0:5: The

PDFs of the reduced velocity dispersions, Nv , plotted in Fig. 4,

demonstrate some excess of particles with lower v, but it can also

be roughly fitted to a Gaussian function with kvl < 1 and

dispersion sv < 0:4: This dispersion is about 2 times larger than

that in real space.

These results show that, although in redshift space walls are not

so conspicuous as in real space, in the range of `time' , 0:2 #
t #, 0:5; the relaxation of compressed dark matter can be

directly recognized by these methods.

6.4 Walls in mock catalogues

The analysis of mock catalogues characterizes how the considered

simple model of large-scale bias influences the measured wall

properties. These catalogues were investigated also in both real

and redshift spaces. The analysis was performed for 10 values

Nmin �15 # Nmin # 60� and for seven values of the core radius

Dcore �7 h21 Mpc # Dcore # 10 h21 Mpc� using a linking length

llink � 5 h21 Mpc: The main results averaged over these Nmin and

Dcore are listed in Table 2.

6.4.1 `Galaxy' walls in real space

In real space for all mock catalogues the parameters tv, khwl and

kewl are similar to those found for the basic OCDM model. The

velocity dispersion of `galaxies' within walls, kwwl < sv < svel;
exceeds that found for the basic model by about of 20±30 per cent.

These variations can be attributed to the preferential identification

of `galaxies' in the central high-density regions of walls, where

the relative velocities of DM particles are also larger than the

mean values. The wall thickness and the velocity dispersion of

`galaxies' can be reduced and turned into dimensionless quantities

in the same manner as in equation (6.4), and the PDFs for the

reduced wall thickness and velocity dispersion within walls, Nz

and Nv , are also similar to Gaussian functions. The PDFs Nv are

shown in Fig. 5 for the mock4 catalogue.

As expected, the mean surface density of walls, kqwl, exceeds

that found for the basic OCDM model, and this excess

progressively increases, together with the biasing factor used.

This excess can be considered as a suitable measure of the bias.

This means that to characterize this bias the difference between tm

and tv and/or between tm and other amplitudes measured for the

same catalogues can be used, together with the autocorrelation

function. The growth of qw leads to a proportional growth of d , as

the wall thickness is only weakly distorted.

The large-scale bias increases the contrast between richer and

poorer walls, which is seen as an essential growth of the mean

wall separation. In all mock catalogues, kDsepl is about 2 times

larger than in the basic OCDM model. The growth of both kqwl
and kDsepl does not distort the relation between fw and fdq.
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6.4.2 `Galaxy' walls in redshift space

In redshift space the fraction of the same particles assigned to

walls in both real and redshift spaces becomes f cr , 80±85 per

cent (Table 2), which explains the similarity of parameters kqwl
and tm listed in Table 2 for both cases. The expected growth of

wall richness in redshift space according to (3.13) is not found,

and the surface densities of walls, kqwl, are, within the range of

errors, the same in both real and redshift spaces. This fact shows

that for `galaxies' the expected growth of wall richness in redshift

space is suppressed even more strongly than for DM component

due to the relaxation of compressed matter. Then equation (3.1)

describes correctly the time dependence of the mean wall surface

density.

The parameters khwl and kwwl for `galaxy' walls are similar to

those found for the underlying OCDM model. The difference of

kwwl found for the same samples of walls in real and redshift

spaces and a slow decrease of kwwl for the more strongly biased

models can be assigned to the loss of a small fraction of particles

with large velocities, which demonstrates the sensitivity of these

functions to the method of wall identification.

In redshift space we have not which a reliable independent

estimator of the amplitude as tv. There the bias is seen as a

relation of the amplitudes tm $ tj: This makes it difficult to

estimate quantitatively the relatively moderate large-scale bias in

observed catalogues, because both tm and tj are sensitive to the

bias.

This discussion shows that the simple algorithm used in DMRT

for the `galaxy' identification does not significantly distort the

basic characteristics of simulated walls, and a stronger bias can be

seen as an excess of the surface density of `galaxies' relative to

that found for the DM component in the basic model. At the same

time the mean velocity dispersions of both the DM component and

the `galaxies' assigned to walls, kwwl, tend to be smaller than sv

and tv, and other characteristics of the amplitude of perturbations.

7 S U M M A RY A N D D I S C U S S I O N

In this paper we continue the investigation of large-scale matter

distribution and processes of large-scale structure formation and

evolution. Some aspects of these problems were discussed in our

previous papers (LCRS1; LCRS2; DURS; DMRT; MuÈller et al.

1998), where the 3D analysis of the observed and simulated large-

scale structure was performed with the core-sampling and the

Minimal Spanning Tree techniques. Another approach to this

problem, based on the percolation technique, was discussed in

Sahni, Sathyaprakash & Shandarin (1994), Sathyaprakash, Sahni

& Shandarin (1998) and Shandarin & Yess (1998). The statistical

description of structure formation and evolution based on the

Zel'dovich theory of non-linear gravitational instability can be

found in Lee & Shandarin (1998) and DD99.

Here we direct our attention to the physical aspects of the

process of wall formation, which implies a more detailed dis-

cussion of the properties of DM walls in real space. The

simulations described and investigated in DMRT are used to test

the theoretical expectations, to estimate the influence of small-

scale clustering and relaxation of compressed matter and other

random factors, and to examine the power of the statistical

methods used to describe the large-scale matter distribution. Three

cosmological models, at different evolutionary stages, were

analysed in the same manner, and the comparison of results

obtained for these models allows us to estimate the properties of

walls at various t .

In redshift space the influence of small-scale clustering and

large velocity dispersion of compressed matter noticeably distorts

some characteristics of the walls. These distortions also appear in

the considered mock catalogues, and can even be enhanced by the

possible large-scale bias between the spatial distribution of DM

and galaxies.

Some of these results may depend on the code used for the

simulations (see, e.g., the discussion in Splinter et al. 1998), and

they should be checked with simulations employing a code with

higher spatial resolution.

7.1 Identification of walls

The core-sampling approach described in Section 5 allows us to

characterize, in more detail, the matter distribution along the

sampling core, and to estimate the uncertainty in measured

properties of wall-like condensations introduced by the influence

of velocity dispersion and small-scale clustering. The influence of

these random factors is demonstrated by comparing results

obtained with various Dcore, Nmin and llink.

Results presented in Section 6 show that some fraction of the

early compressed matter has subsequently evaporated due to

relaxation processes. These DM particles, together with the

infalling matter, form an extended halo around the walls, and it is

therefore difficult to separate the walls from the background. The

same problem is met by the correct definition of boundaries of

galaxies and clusters of galaxies. It was also discussed by DMRT,

LCRS2 and DURS, where the methods of wall selection,

described in Section 6, were applied to simulated DM and

observed galaxy distributions.

The central high-density part of walls is reliably selected in all

Figure 5. PDFs of wall surface density, Nm(qw/kqwl), wall separation,

Nsep(Dsep/kDsepl), reduced velocity dispersion, Nv(v /kv l), and velocity of

walls, Nv(vw/sv), for the mock4 catalogues in real (solid lines) and redshift

(dashed lines) spaces. The same fits as in Figs 1±4 are plotted as well.

Characteristics of simulated walls 677

q 2000 RAS, MNRAS 318, 665±680



the cases, but various definitions of the wall boundaries can

noticeably change the measured characteristics of walls. To

provide more objective comparisons of wall characteristics, the

same dimensionless parameters fw and d thr should be used for

identification of walls in different catalogues and simulations.

7.2 DM walls in real space

7.2.1 Measured characteristics of walls

The results presented in Section 6 show that the core-sampling

approach can be successfully used for the investigation and

description of the large-scale matter distribution and the wall-like

matter condensations. It allows us to estimate the surface density,

thickness, velocity dispersion and other basic parameters of DM

walls corrected for the influence of random curvature and shape of

walls. These parameters differ from those obtained in 3D space

with the Minimal Spanning Tree and inertia tensor methods, and

these methods suitably complement each other.

The measured wall characteristics can be compared with

predictions of the Zel'dovich theory, which reveals the influence

of relaxation of compressed matter on the properties of walls and

allows us to correct the theoretical expectations. The small-scale

clustering of compressed matter and the wall disruption lead to

noticeable variations of measured wall characteristics for different

parameters of the sampling core. These variations are not so large

for the low-density models, but they increase rapidly with t .

The dimensionless surface density of walls, qw, is closely

connected with the size of proto-walls as discussed by DMRT,

LCRS2 and DURS. The high surface density of walls, qw $ 0:6;
found above even for the low-density models, demonstrates that

processes of strong non-linear matter evolution occur at a typical

scale of , qwlv , �15±25� h21 Mpc: This evolution is correctly

described by the Zel'dovich theory. This characteristic is sensitive

to the basic cosmological parameters, Vm and h, which allows us

to select the class of more perspective models for further

investigation.

7.2.2 Relaxation of compressed matter

The problem of relaxation of compressed matter is now in the

forefront, and the results obtained allow us to begin a discussion of

the statistical characteristics of this relaxation. The analysis

performed in real space is more important for the discussion of the

basic physical processes which occurred during the formation of

wall-like matter condensations, such as the small-scale matter

clustering and the relaxation of the compressed matter. These

processes generate the large velocity dispersion within walls and

lead to the evaporation of high-velocity particles. Thus, in all these

cases a significant deficit of energy in DM walls as compared with

the expectations of the Zel'dovich theory ±,(50±80) per cent and

more±was found. The growth of this deficit with t from the

OCDM to SCDM models demonstrates that the DM relaxation

becomes more and more important for later evolutionary stages,

and its influence on the observed parameters of the large-scale

matter distribution becomes crucial for t $ 0:5:
The relaxation is seen in rich superclusters of galaxies such as

the Perseus-Pisces supercluster (Saslaw & Haque±Copilah 1998).

It is essentially accelerated and amplified by the small-scale

clustering of compressed matter. This clustering is clearly seen in

observations as, for example, a strongly inhomogeneous galaxy

distribution within the Great Wall (Ramella et al. 1992). The

clusters of galaxies situated within wall-like superclusters similar

to the Great Wall and the Perseus-Pisces supercluster can be

considered as extreme examples of this process.

The merging of structure elements formed earlier is very

important for the formation of large walls (DD99). This means

that actually the relaxation occurs step by step during all the

evolutionary history, beginning with the formation of first low-

mass, high-density pancakes which later are successively

integrated and merged to larger structure elements. This means

also that the finally reached degree of relaxation and the properties

of compressed matter depend on the (unknown) evolutionary

history of the considered walls, and therefore can be characterized

only statistically.

The relaxation of compressed matter destroys the tight

correlation between the surface density and velocity dispersion

predicted by the Zel'dovich theory (3.6), but it generates other

correlations between the same characteristics described by the

relations (6.4). This fact indicates that the properties of com-

pressed matter are sufficiently general, and these characteristics

can be used to improve the methods of wall selection and the

description of wall properties.

The velocity dispersion within walls increases gradually with t
from the OCDM to the SCDM model. As was discussed in

Section 6, the particles with high velocity are gravitationally

confined and occupy preferentially the high-density central

regions of walls. This fact confirms that, these particles are

probably relaxed and have a (quasi)stationary distribution. This

distribution is not as stationary as, for example, that in clusters of

galaxies, and it is slowly evolving due to the large-scale matter

flow along the walls and the persisting merging of neighbouring

structure elements, but presumably this evolution does not

significantly distort the distribution of the formed matter.

7.3 DM walls in redshift space

The matter condensation seen in redshift space can be artificially

enhanced partly by the influence of streaming velocities. The

possible influence of this effect has been widely discussed over

the past decade (see, e.g., Kaiser 1987, McGill 1990a, Davis,

Miller & White 1997, Hamilton 1998 and Hui et al. 2000) and, as

applied to properties of absorption lines in the spectra of high-

redshift quasars, by McGill (1990b) and more recently by

Levshakov & Kegel (1996, 1997). These tendencies are also

clearly seen from the direct application of the Zel'dovich

approximation to the wall formation in redshift space as was

discussed in Section 3.2. Of course, it is impossible to decide

which particles belong to walls, but we can estimate statistically

the properties of DM walls identified in redshift space. However,

the influence of this uncertainty cannot be separated from the

influence of the relaxation and other factors discussed above.

For all models the comparison of DM walls selected in real and

redshift spaces demonstrates that they are composed mainly from

the same particles±this fraction is about f cr , �70±80� per cent

(Table 2). This means that in both cases we find the same walls,

and the fraction of randomly added or lost particles is indeed

small. In spite of this, some properties of walls in redshift space

are quite sensitive to the velocity dispersion and to the methods of

wall identification. Thus the strong growth of wall thickness±

about a factor of 2 ± confirms results obtained by Melott et al.

(1998). This effect is quite similar to the well-known `finger of

God' effect observed in clusters of galaxies.
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The wall surface density, qw, is most interesting, as it is directly

connected with the basic cosmological parameters, Vm and h. Our

analysis shows that for low-density models±LCDM and OCDM±

the measured value of qw is similar in both real and redshift

spaces. This means that the growth of the matter condensation

within walls due to streaming velocities as predicted by the

Zel'dovich theory is strongly suppressed by the influence of the

matter relaxation and the transformation of a continuous matter

infall to a discontinuous one. Actually, similar relations connect

the fundamental wall characteristics such as qw and tm.

The velocity dispersion within walls selected in 3D redshift

space can be noticeably underestimated, which is a direct conse-

quence of the method of wall selection. In redshift space, particles

with large velocities are artificially shifted to the periphery of

selected walls, and so can be omitted from the analysis.

7.4 Walls in mock catalogues

For the considered mock catalogues the influence of velocity

dispersion is enhanced by the methods used for `galaxy' selection.

The large-scale bias increases the `galaxy' concentration within

walls, and so increases the density gradient near the wall

boundary. When the `galaxies' are identified preferentially in

the high-density central parts of the walls (in real space), then their

velocity dispersion exceeds that for the DM particles, and this

excess may be as large as ,(20±30) per cent. In redshift space, the

parameters of `galaxy' walls such as khwl and kwwl are similar to

those in the underlying DM distribution.

The bias is clearly seen in both real and redshift spaces as an

excess of the mean surface density of walls. The comparison of

parameters qw and tm found for observed wall-like galaxy

condensations with possible independent estimates of the same

parameters gives us a chance to obtain a reasonable observational

estimates of the large-scale bias.

7.5 The amplitude of large-scale perturbations

These results demonstrate again that all characteristics of the

amplitude and evolutionary stage of large-scale structure con-

sidered in Sections 2 and 3 are similar, but not identical, to each

other, as they are sensitive to different properties of perturbations.

The best and most stable measure, tv, comes from measurements

of the velocity of structure elements. It is insensitive to the non-

linear evolution of perturbations, large-scale bias and small-scale

clustering or relaxation of the compressed matter.

The comparison of other estimates for the same parameter t,

namely, tvel, tj , and tm obtained in the same simulations

demonstrates their sensitivity to various natural and artificial

factors. For the low-density models±LCDM and OCDM±the

parameters tv and tm are usually sufficiently close to each other,

which is a direct consequence of the close connection of the

process of wall formation with the large-scale perturbations. The

parameter tm is sensitive to a possible large-scale bias, but to

reveal this factor, we need to have independent unbiased estimates

of the same amplitude.

The most interesting independent estimate of the amplitude is

tj , which is, however, more sensitive to small-scale matter

clustering. Thus, for the SCDM model where this clustering is

stronger it significantly overestimates the large-scale amplitude. It

is less sensitive to the large-scale bias than tm.

Independent estimates of the large-scale amplitude come from

measurements of the CMB anisotropy. The COBE data are

consistent with other available estimates of cosmological para-

meters and of the large-scale amplitude, and therefore tT can be

considered as the best estimate of the combination (2.9) of G and

the amplitude. It can be connected with estimates of cosmological

parameters Vm < 0:3; VL < 0:7 obtained from observations of

high-redshift supernovae (Perlmutter et al. 1998). None the less,

tT should be corrected for a possible contribution of gravitational

waves.

The investigation of the space density of clusters of galaxies

and its redshift evolution (see, e.g., Bahcall & Fan 1998, Eke et al.

1998 and Wang & Steinhardt 1998) seems also to be promising

and can give the required independent measure of the large-scale

amplitude. The formation and evolution of galaxy clusters is

caused by large-scale perturbations, and their characteristics can

be connected with these perturbations. However, they are sensitive

to the thermal evolution of clusters and, moreover, are related to

only ,(10±15) per cent of matter accumulated by the clusters.

This means that they are not free from random variations, which

are seen, in particular, as the well-known variations of the

autocorrelation function with the cluster sample.

The critical discussion of available measurements of cosmolo-

gical parameters (Efstathiou 1999; Wang et al. 1999) shows that,

in spite of a large progress reached during recent years, we do not

have yet a reliable unbiased estimate of these parameters, and

these data should be tested with respect to possible random large-

scale variations. The application of the methods discussed to large

observed redshift surveys can help to achieve this goal.
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A P P E N D I X A : DY N A M I C A L

C H A R AC T E R I S T I C S O F WA L L S I N T H E

Z E L' D OV I C H T H E O RY

The results obtained in DD99 allow us to discuss in more details

dynamical characteristics of walls predicted in the Zel'dovich

theory. The comparison of these expected and actually simulated

characteristics reveals the influence of interaction and relaxation

of compressed matter.

Following DD99 we define the wall formation as the

intersection of two DM particles with different Lagrangian

coordinates, q1 and q2. The difference of these coordinates

measures the size of the pancake. Using the basic relations of the

Zel'dovich theory (2.2) and (2.3), linking the Lagrangian and

Eulerian coordinates and velocities of particles, we obtain the

coordinate and velocity of a wall as a whole (DD99):

rw � 1

lvqw

�q2

q1

nrdq � lv

1� z
qc 2 t�z� DF

qw

� �
;

vw � 1

lvqw

�q2

q1

n�u 2 Hr�dq

� lvH�z�
1� z

qc 2 t�z��1� b� DF�qw�
qw

� �
;

n � q1 2 q2

jq1 2 q2j
; qc �

jq1 � q2j
2lv

; qw �
jq1 2 q2j

lv
; �A:1�

where DF(qw) is the random difference of the dimensionless

gravitational potential over the wall. It is convenient to introduce

the relative normalized Lagrangian coordinate of a particle within

a wall, q :

qp � qc � 0:5qwq; 2 1 # q # 1:

Using the coordinate q we will describe the relative position and

velocity of the infalling particle with the Lagrangian coordinate qp

or q by the functions:

rinf � nr 2 rw � lv

1� z

qw

2
q 2 t�z� S�q�2

DF�qw�
qw

� �� �
;

vinf � nv 2 vw � 2u�z�0:5qwq� H�z��1� b�rinf ;

u�z� � H�z�lvb�z��1� z�21: �A:2�
Here S� nS is thee random dimensionless longitudinal displace-

ment of a particle from its unperturbed Lagrangian position

introduced by (2.2).

For Gaussian initial perturbations the PDF of the random

function rinf is also Gaussian, and the mean value and dispersion

of rinf should be found using the conditional characteristics of

functions S and DF taking into account that a wall is formed in the

point r� rw (DD99). In this case for walls with qw , 1 we have:

krinfl <
lv

1� z

q3
w

4
q !

����������
kr2

inf l
q

<
lvt�z�
1� z

������
qw

3

r
; �A:3�

and kr2
inf l is independent from q . This means that both random

functions,

rinf and vinf � u�z�0:5qwq � H�z��1� b�rinf

are also independent from q . Hence, for the thickness, hw, of a

wall with the surface density qw, and for the velocity dispersion

within such a wall we have

h2
w � 12 � 1

2

�1

21

dqkr2
inf l � 4l2vt

2qw�1� z�22; �A:4�

w2
w �

1

2

�1

21

dqkv2
inf l � H2l2v

�1� z�2
b2

12
q2

w �
t2�1� b�2

3
qw

� �
:

Here the wall thickness is normalized by the thickness of a

homogeneous slice.
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